Maize (Zea mays): a model organism for basic and applied research in plant biology.
نویسندگان
چکیده
Zea mays ssp. mays is one of the world's most important crop plants, boasting a multibillion dollar annual revenue. In addition to its agronomic importance, maize has been a keystone model organism for basic research for nearly a century. Within the cereals, which include other plant model species such as rice (Oryza sativa), sorghum (Sorghum bicolor), wheat (Triticum spp.), and barley (Hordeum vulgare), maize is the most thoroughly researched genetic system. Several attributes of the maize plant, including a vast collection of mutant stocks, large heterochromatic chromosomes, extensive nucleotide diversity, and genic colinearity within related grasses, have positioned this species as a centerpiece for genetic, cytogenetic, and genomic research. As a model organism, maize is the subject of such far-ranging biological investigations as plant domestication, genome evolution, developmental physiology, epigenetics, pest resistance, heterosis, quantitative inheritance, and comparative genomics. These and other studies will be advanced by the completed sequencing and annotation of the maize gene space, which will be realized during 2009. Here we present an overview of the use of maize as a model system and provide links to several protocols that enable its genetic and genomic analysis.
منابع مشابه
Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)
A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...
متن کاملMaize (Zea Mays L.) Growth and Yield Response to Ethephon Application under Water Stress Conditions
The aim of the present investigation was to study the growth, yield and yield components of maize (Zea mays L.) single cross 704 under different levels of irrigation, plant density, and ethephon in southern Iran where this particular crop has not yet been studied in detail. A field experiment was performed in the 2004 5 growing season at the experimental farm of the College of Agriculture, Shir...
متن کاملCloning and Expression Analysis of ZmERD3 Gene From Zea mays
Background: Stresses (such as drought, salt, viruses, and others) seriously affect plant productivity. To cope with these threats, plants express a large number of genes, including several members of ERD (early responsive to dehydration) genes to synthesize and assemble adaptive molecules. But, the function of ERD3 gene hasn’t been known so far.Objectives:</strong...
متن کاملMaize (Zea mays L.) yield and aflatoxin accumulation responses to exogenous glycinebetaine application
Exogenously applied glycinebetaine (GB) accumulates at high levels in maize (Zea mays L.). Under water deficit and high temperature conditions GB application produces yield benefits. These sub-optimum conditions often result in high levels of aflatoxin accumulation which reduces grain quality. A 3-year (2008, 2009 and 2010) field experiment was conducted to determine the effects of GB on ma...
متن کاملMaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research
In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the production of va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cold Spring Harbor protocols
دوره 2009 10 شماره
صفحات -
تاریخ انتشار 2009